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Biologically-based in silico 
models of pathogen-host 

interactions 

Our ongoing efforts 

Distribution A.  Approved for public release; distribution unlimited 



3 

Our ongoing efforts 

Immune system response model 

• Predict time-course of pathogenic infection in humans 

• Quantify systemic response to pathogen exposure 

• F. tularensis as our case study 

Need a ‘bridge’ to eventual health outcome 

• Mediators of shock 

Endotoxin/lipopolysaccharide (LPS) 
Principal component of gram-

negative bacteria cell wall 
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Mediators of endotoxic shock 

Activation of  
complement system TNFα, IL-1, IL-6,  

platelet activating factor (PAF) 

T cell release 
IL-2, IFNγ,  
GM-CSF 

Endotoxin/LPS 

platelet  
activation 

macrophage 

neutrophil  
activation, 
release of 

oxygen radicals 

Endothelial damage 

ENDOTOXIC SHOCK 

Tissue injury, organ dysfunction 

Arachidonic acid metabolism 
Thromboxanes (TX) 
Prostaglandins (PG) 

Leukotrienes (LT) 
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Species differences in sensitivity to 
E. coli endotoxin 

Reason(s) for species-dependent sensitivity to endotoxin? 

 Hypothesis – Due to differences in mediator kinetics/dynamics? 

guinea pig 
rabbit 

mouse 
rat 

macaques 

Increasing sensitivity 

human 
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Vasoactive lipid mediators in  
endotoxic shock 

Eicosanoids can be detected in circulation at high enough 
concentrations to be responsible for events in endotoxic shock  

• High PG levels in circulation of animals subjected to endotoxin 

• Increased plasma TXB2 in humans suffering from severe septic 
shock 

• Endotoxemia and sepsis: Blood PAF levels are elevated 
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Vasoactive lipid mediators in  
endotoxic shock 

Synthesis inhibitors or receptor antagonists of lipid mediators are 
capable of modifying the course of endotoxic shock 

• Lipoxygenase (LOX) inhibitors protect mice and rats from lethal 
endotoxemia 

• TXA2 synthetase inhibitors are effective in rat endotoxic shock 

• TXA2 receptor antagonists block development of pulmonary 
hypertension in endotoxemia 

• PAF antagonists (Ginkgolide B, GB) protect rats, mice, pigs, and 
humans from injurious effects of LPS 
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Aims 

To elucidate wide range of sensitivity to LPS between species 

• Looked into differences in kinetics and dynamic responses to 
downstream mediators (PAF) 

• Literature suggests species differences in PAF response in guinea 
pig, human, and rat (in decreasing order of sensitivity) 
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Aims 

Develop a biologically-based in silico model of PAF to give insights 
into dynamic evolution of endotoxic shock 

• Elucidate link between kinetics and biological response 

• Simulate kinetic data reported in literature 

• Extrapolate animal response data to humans 
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Iterative approach to modeling 

Define Realistic Model Make Predictions 

Refine Model 

 Lung Blood 

RP Blood 

Exposure 

Time 

Bo
un

d 
co

m
po

un
d 

Collect Data 
For Each Species 

Physiological 
Parameters 
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Blood flow rates 

 

PAF kinetics 
Partition 
Binding 
Density 

Hydrolysis 
 

+ 
 

Model Equations 

 Heart Blood 

SP Blood 
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Platelet-activating factor (PAF) 

• Autacoid binds to specific PAF receptor sites 

– Affinity and density is dependent on cell, tissue, and species 

• Much data in literature focus on characterization of PAF binding 
to receptors on platelets 

• While PAF effects are universal, platelet sensitivity towards PAF 
receptor varies among species 

• Species-dependent difference at receptor level of platelets 

Increasing platelet PAF receptor density 
guinea pig 

rabbit 
rat 

mouse 
human 
baboon 
canine 

Rhesus, 
cebus 
apella 

primate 
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Platelet sensitivity is correlated to in 
vivo responses to PAF 

Increasing platelet sensitivity 
guinea pig 

rabbit 
mouse 

rat 

hemoconcentration at higher doses hemoconcentration 

dog 
primate 
human bronchoconstriction reduced/absent 

bronchoconstrictive responses 
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Platelet sensitivity is correlated to in 
vivo responses to PAF 

We can extrapolate in vitro cell line data to whole tissues, and 
from there to whole animals with PBPK models 

• C16-PAF shows slightly higher, but statistically insignificant 
difference in potency between human lung and platelets 
• Similarity between PAF receptors in human platelets 

and lung tissue 
• In vitro platelet binding data were used in our models at 

tissue level when tissue-specific data were unavailable 
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PAF is metabolized in blood 
and tissues by PAF 

acetylhydrolase 

Describes body as a set of 
interconnected 
compartments 
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Added receptor binding 
to platelets and red blood 
cells 

PAF receptors are also 
located in endothelium 
of blood vessel walls   
and in the cells 
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The resulting integrated model is used to simulate 
pharmacokinetics of PAF after intravenous 
exposure… 
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Time (min) 

Pharmacokinetics of PAF (1.25 µg/kg IV) 
Co

nc
en

tr
at

io
n 

(n
M

) 

Experimental data: Lartigue-Mattei et al., 1994 

Simulation of [3H]PAF concentration in venous plasma in rabbit 
following a 1.25 µg/kg IV exposure compared to data 

• This simulation compared with kinetic data show that the model 
is capable of accurately simulating the experimental data 
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Time (min) 

Pharmacokinetics of PAF (1.25 µg/kg IV) 

rabbit 
guinea pig 

rat 
human 

Data show a link between differential sensitivity to LPS and PAF 
among species and PAF kinetic parameters 

• Higher plasma PAF in guinea pig corresponds to its increased 
susceptibility to LPS 
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Experimental data: Lartigue-Mattei et al., 1994 
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Time (min) 

Pharmacokinetics of PAF (1.25 µg/kg IV) 

rabbit 
guinea pig 

rat 
human 

Experimental data: Lartigue-Mattei et al., 1994 

Simulations demonstrate that bound PAF in heart plasma is higher 
in rabbit than rat 

• Possibly explains why it is more toxic in rabbit than rat 

Distribution A.  Approved for public release; distribution unlimited 



20 

Model predictions of external LD50 

• Various model outputs were examined for correlation with 
observed signs of infection and lethality in an attempt to identify 
the most appropriate dose metrics for predicting adverse effects 

Lethality dose response curve 

Experimental data: Lefer et al., 1984, Tanaka et al., 1983 

Peak concentration of bound compound in heart plasma 

rabbit 
rat 

Le
th

al
ity

 (%
) 
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Lethality vs. internal dose metric 

Regression of lethality on the internal dose metric results in an 
internal LD50 of ~22 nM peak bound in heart plasma 

~22 nM 

LD50 

rabbit 
rat 

Le
th

al
ity

 (%
) 

Maximum concentration bound in heart plasma (nM) 
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Human lethality prediction 

• Running the human model shows that the human external dose 
required to achieve this peak is 900 µg/kg IV 

– Humans should exhibit intermediate clearance/binding, 
consistent with intermediate toxicity of PAF in humans 

Rabbit Human Rat 

External LD50 (µg/kg IV) 0.57 900 7.5 

• Wrong dose metric? 

• Dynamic differences downstream from receptor binding? 

• Future work – in vitro experiments to verify value 

Distribution A.  Approved for public release; distribution unlimited 



23 

Arachidonic acid (AA) cascade 
Species differences 

Interspecies differences in eicosanoid involvement highlight the 
need to consider the AA cascade in interpreting toxicity data 

Cardiac failure 
Airway 

hyperresponsiveness Pulmonary vasoconstriction 
Edema formation 

Early decrease in blood pressure 
Induces sustained hypotension of 

endotoxemia 

arachidonic acid 
COX 5-LO 

5-HPETE PGG2 

PGH2 

LTC4 

PGF 

PGI2 

PGE2 

TXA2 

PGD2 

LTA4 

LTB4 

phospholipid 
PLA2 Lyso-PAF PAF 
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Future work 

• Additional comparisons with kinetic and toxicity data in 
literature 

• Confirmation of human parameter values used in human 
lethality prediction 

• Addition of other exposure routes in order to simulate realistic 
human exposure scenarios (inhalation) 
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 Adapt model to antagonists  

PAF antagonists protect against injurious effects of LPS 

• GB inhibits PAF-induced platelet aggregation and attenuates 
airway vascular permeability, hypotension, and lethality, and also 
AA accumulation 

• Preincubation of platelets with GB diminished PAF binding in a 
specific and saturable manner 
 

Model structures for PAF analogs and antagonists are similar 

• Different physicochemical and biochemical parameter values 

 

Modeling the kinetics of these antagonists and 
interactions/competition with PAF for the receptor would 
evaluate therapeutic efficacy 
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Model refinement  

Mechanisms involved in bioactions of PAF are complex probably 
because receptor activates multiple signaling pathways 

    choline 
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Summary 

Model of PAF response interactions has been developed 

• Describes distribution to tissues, hydrolysis, and binding to 
receptors in tissue vasculature following IV exposure 

• Capable of accurate simulation of kinetic profiles in animals 

• Peak PAF bound in heart is indicated as a dose metric for 
extrapolation of lethality across species 

 

Model development is an iterative process 
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